

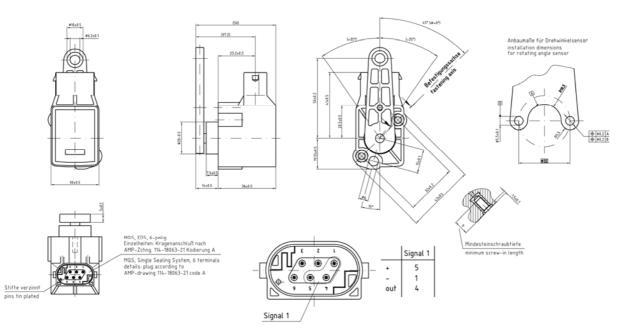
Hall Effect Position Sensors

Hall Effect Position Sensors

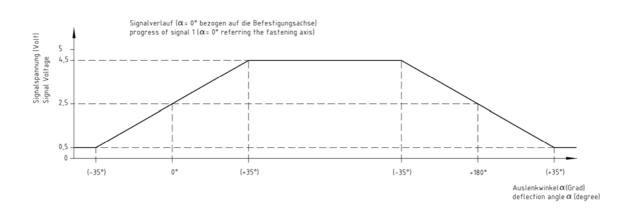
1 General description

	962 640 070 962 640 120		962 630 YY XXX			
Supply	5 V, 6 n	nA max	5 V, 6 mA max per signal			
Output signal	Analogue	e voltage	Analogue voltage			
Saaling grada	IP 67 /	' IP 69	IP 67 / IP 69			
Sealing grade	with mounted	wire harness	with mounted wire harness			
Temperature range	-40° C to $+120^{\circ}$ C	C (1h at 130°C)	- 40°C to + 120°C (1h at 130°C)			
Angle range (degrees)	70 120		30 or 60 or 90 or 120			
Connector	AMP / M	QS 6 Pins	AMP / MQS 6 Pins			

962 640 01 070 (1 signal, angle range 70°)	962 630 01 XXX (1 signal)
962 640 01 120 (1 signal, angle range 120°)	962 630 02 XXX (2 signals identical)
	962 630 03 XXX (2 signals increasing S1 =2 x S2)

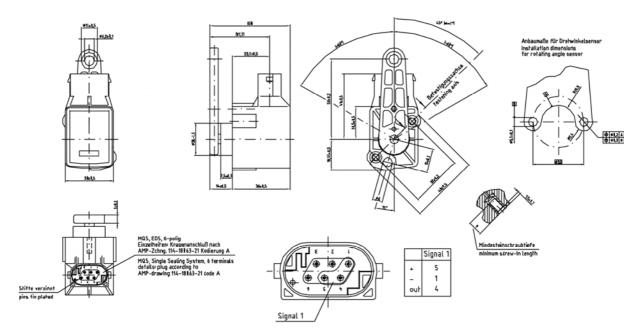


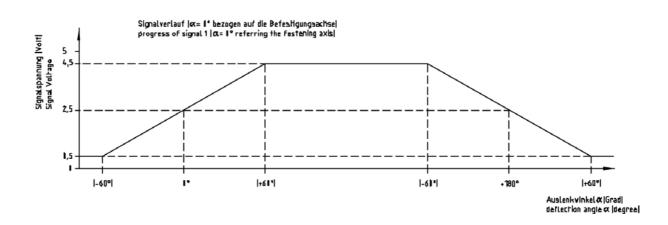
2 Data sheet Hall Effect position sensor


2.1 962 640 01 070 series

This sensor based on Hall Effect technology delivers one single signal 0.5 - 4.5V. The angle range is 70°. The Hall Effect sensors can be connected directly to the electronic control module of the vehicle.

2.1.1 Dimensions and specification

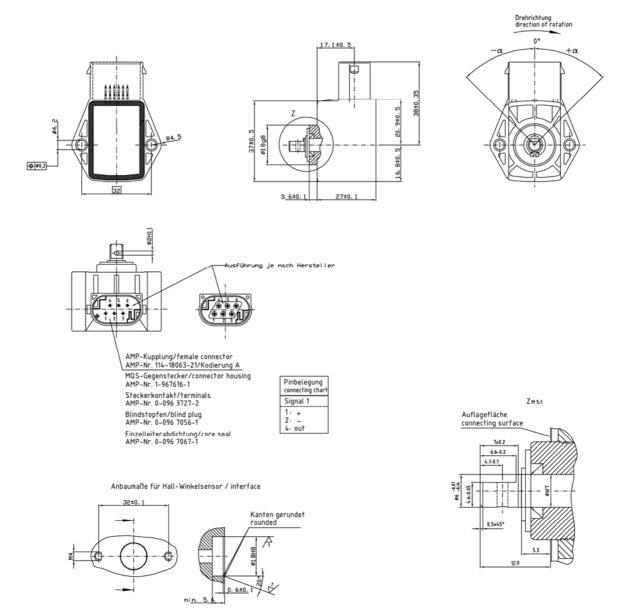



2.2 962 640 01 120 series

This sensor based on Hall Effect technology delivers one single signal 0.5 - 4.5V. The angle range is 120° . The Hall Effect sensors can be connected directly to the electronic control module of the vehicle.

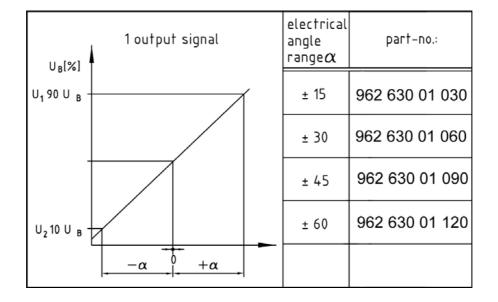
2.2.1 Dimensions and specification

2.2.2 Signals



2.3 962 630 01 XXX Series

These sensors based on Hall Effect technology deliver one single signal 0.5 - 4.5V. There are different angle range available : 30° , 60° , 90° and 120° . The Hall Effect sensors can be connected directly to the electronic control module of the vehicle.


2.3.1 Dimensions and specification

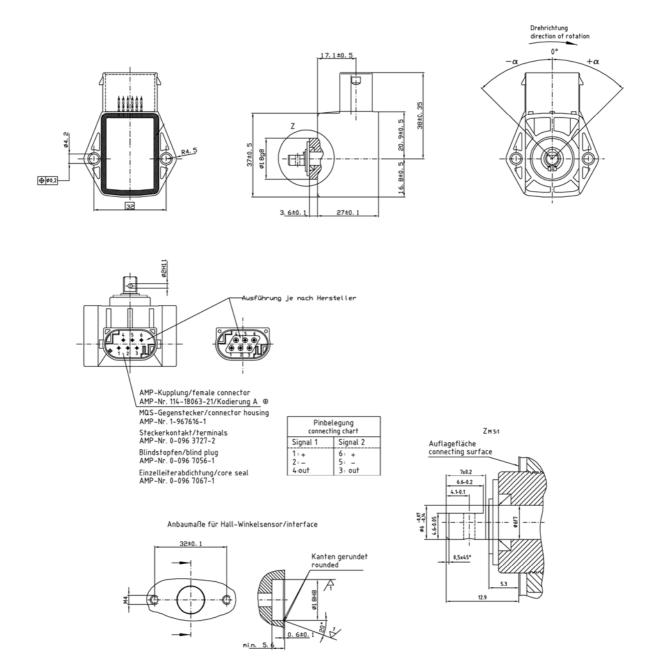
MCS
MOBILE CONTROL SYSTEMS SA

Hall Effect Position Sensors

2.3.2 Signal

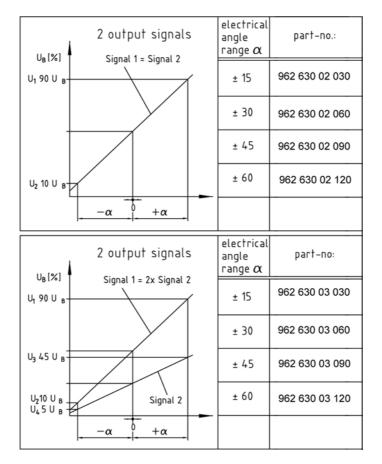
2.3.3 Technical specification

962 630 01 030	962 630 01 060	962 630 01 090	962 630 01 120		Technische Daten specification						
8	8	8	8	Symbol	Englisch Parame	eter Deutsch	Conditions	MIN.	Тур.	MAX.	Unit
X	Х	Х	Х	T o T s	Temp: Operating Storage	Temp: Betrieb Lagerung		-40 -40		+120 +150	°(°(
X	X	X	х	۱ ۰	Output Current	Ausgangsstrom			0,5	1	mA
Х	Х	Х	Х	l osc	Short-Circuit Output Current	Ausgangskurz- schlußstrom	t_<60s	7	10	11	mΑ
X	X	х	Х	Rs	Resolution	Auflösung			<0,01		deg
X	X	Х	Х	Rр	Reproducibility	Reproduzierbarkeit			0,01		deg
X	X	Х	Х	Rну	Hysteresis	Hysterese			±0,05		%
Х	Х	Х	Х	Fι	Relative Linearity	Relative Linearität	±45°		±0,5	±1	%
х	х	х	Х	U off	Offset Voltage	Offsetspannung	$\alpha = 0 \deg$			±50	mν
X	х	х	Х	U off, D	Offset Voltage Drift	Offsetsp. Drift				±64	ppm/K
X	х	Х	Х	Uв	Supply Voltage	Nennversorgungs spannung		4,75	5	5,25	V
X	X	х	Х	∣в	Quiescent Supply Current	Ruhestrom- aufnahme	α = 0 deg U _B = 5V	3,5	4,5	5,5	mΑ
X	Х	Х	Х	CL	Load Capacity	Lastkapazität				22	nF
Х	х	Х	Х	U rev	Reverse Polarity	Verpolung	t=10s t=∞			18 10	V
Х	X	Х	Х	U max	Over Voltage	Maximalspannung	† <i>=</i> ∞			36	V
Х	Х	Х	Х	U 1	Tolerance Start Position	Toleranz Startstellung			±50		тV
Х	Х	Х	Х	U	Tolerance Final Position	Toleranz Endstellung			±50		mν



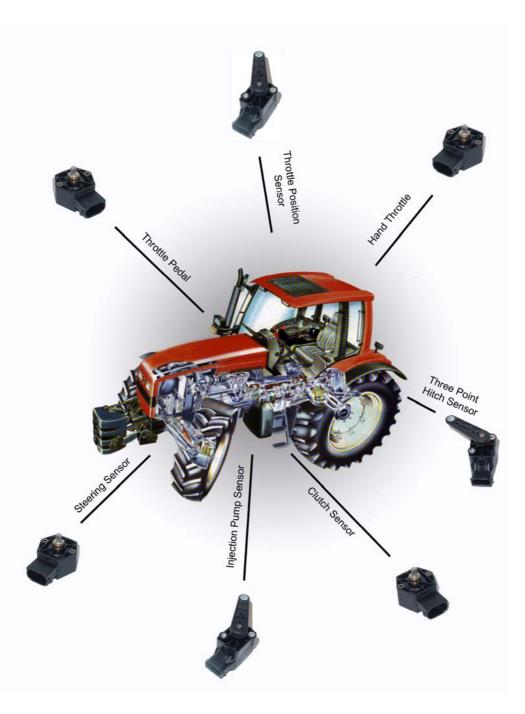
2.4 962 630 02 XXX and 962 630 03 XXX Series

These sensors based on Hall Effect technology deliver two signals. These two signals can be identical (962 630 02 XXX) or one signal equal to the double of the second (962 630 03 XXX) Signal(1) = 2 * Signal(2). There are different angle range available : 30° , 60° , 90° and 120° .


The Hall Effect sensors can be connected directly to the electronic control module of the vehicle.

2.4.1 Dimensions and specification

2.4.2 Signals


2.4.3 Technical specification

								1	Technische Daten		specif	ication			
962 630 02 030	962 630 02 060	962 630 02 090	962 630 02 120	962 630 03 030	962 630 03 060	962 630 03 090	962 630 03 120	Symbol	Englisch Paramé	eter Deutsch	Conditions	MIN.	Тур.	MAX.	Unit
Х	Х	Х	Х	Х	Х	Х	Х	T o T s	Temp: Operating Storage	Temp: Betrieb Lagerung		-40 -40		+120 +150	°C °C
X	х	X	х	х	X	X	Х	۰ ا	Output Current	Ausgangsstrom			0,5	1	mA
Х	Х	Х	Х	Х	Х	Х	Х	l osc	Short-Circuit Output Current *	Ausgangskurz- schlußstrom *	t≤60s	7	10	11	mA
X	х	х	Х	Х	X	X	Х	R s	Resolution	Auflösung			<0,01		deg
Х	X	X	Х	х	Х	Х	х	Rр	Reproducibility	Reproduzierbarkeit			0,01		deg
X	X	X	Х	х	Х	Х	х	Rну	Hysteresis	Hysterese			±0,05		%
Х	Х	х	Х	Х	Х	Х	Х	Fι	Relative Linearity	Relative Linearität	±45°		±0,5	±1	%
Х	X	х	х	х	х	х	х	U off	Offset Voltage	Offsetspannung	$\alpha = 0 \deg$			±50	mν
X	х	х	х	х	X	X	х	U off, D	Offset Voltage Drift	Offsetsp. Drift				±64	ppm/K
X	х	х	Х	Х	X	X	х	Uв	Supply Voltage	Nennversorgungs- spannung	-	4,75	5	5,25	V
Х	Х	X	Х	Х	Х	Х	Х	В	Quiescent Supply Current *	Ruhestrom- aufnahme *	α = 0 deg U _B = 5V	3,5	4,5	5,5	mΑ
Х	Х	Х	Х	Х	Х	Х	Х	CL	Load Capacity	Lastkapazität				22	nF
Х	Х	Х	Х	Х	Х	Х	Х	U rev	Reverse Polarity	Verpolung	t=10s t=∞			18 10	V
Х	Х	X	Х	Х	Х	Х	Х	U max	Over Voltage	Maximalspannung	t=∞			36	V
Х	Х	Х	Х	Х	Х	Х	Х	U 1	Tolerance Start Position	Toleranz Startstellung			±50		mν
Х	Х	Х	Х	Х	Х	Х	Х	U	Tolerance Final Position	Toleranz Endstellung			±50		mν

∗ per channel / pro Kanal

3 **Typical Applications:**

Tel. : +32-2-345.18.10 Fax : +32-2-343.94.23 www.mcs-belgium.com info@mcs-belgium.com Contact : Norbert Mendlicki